

INSTYTUT TECHNIKI BUDOWLANEJ

PL 00-611 WARSZAWA

ul. Filtrowa 1

tel.: (+48 22) 825-04-71 (+48 22) 825-76-55 fax: (+48 22) 825-52-86

www.itb.pl

European Technical Assessment

ETA-17/0679 of 02/08/2017

General Part

Technical Assessment Body issuing the European Technical Assessment

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Instytut Techniki Budowlanej

RAMSAUER Anker Kleber 680

Bonded anchor with anchor rod made of galvanized steel or stainless steel for use in concrete

Ramsauer GmbH & Co KG Aigen 24 5351 Voglhub, Austria

Ramsauer - Manufacturing plant 1

22 pages including 3 Annexes which form an integral part of this Assessment

Guideline for European Technical Approval ETAG 001, Edition April 2013 "Metal anchors for use in concrete – Part 1: Anchors in general and Part 5: Bonded anchors", used as European Assessment Document (EAD)

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

Specific Part

1 Technical description of the product

The RAMSAUER Anker Kleber 680 are bonded anchors (injection type) consisting of a injection mortar cartridge using an applicator gun equipped with a special mixing nozzle and threaded anchor rod of the sizes M8 to M24 made of:

- galvanized carbon steel,
- stainless steel.
- high corrosion resistant stainless steel,

with hexagon nut and washer.

The threaded rod is placed into a drilled hole previously injected (using an applicator gun) with a mortar with a slow and slight twisting motion. The threaded rod is anchored by the bond between rod, mortar and concrete.

The threaded rods are available for all diameters with three type of tip end: a one side 45° chamfer, a two sides 45° chamfer or a flat. The threaded rods are either delivered with the mortar cartridges or commercial standard threaded rods purchased separately. The mortar cartridges are available in different sizes and types.

An illustration and the description of the products are given in Annex A1 to A4.

2 Specification of the intended use in accordance with the applicable European Assessment Document (EAD)

The performances given in Section 3 are only valid if the anchors are used in compliance with the specifications and conditions given in Annex B1 to B10.

The performances given in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer or the Technical Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Performance of the product

3.1.1 Mechanical resistance and stability (BWR 1)

The essential characteristic is detailed in the Annex C1 to C4.

3.1.2 Safety in case of fire (BWR 2)

No performance assessed.

3.1.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of

the Construction Products Regulation, these requirements need also to be complied with, when and where they apply.

3.1.4 Safety and accessibility in use (BWR 4)

For Basic Requirement Safety in use the same criteria are valid as for Basic Requirement Mechanical resistance and stability (BWR 1).

3.1.5 Sustainable use of natural resources (BWR 7)

No performance assessed.

3.2 Methods used for the assessment

The assessment of fitness of the anchors for declared intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 has been made in accordance with the ETAG 001 "Metal anchors for use in concrete", Part 1: "Anchors in general" and Part 5: "Bonded anchors", on the basis of Option 1 and 7.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision 96/582/EC of the European Commission the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete	For fixing and/or supporting to concrete structural elements (which contributes to the stability of the works) or heavy units	_	1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document (EAD)

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Instytut Techniki Budowlanej.

For type testing the results of the tests performed as part of the assessment for the European Technical Assessment shall be used unless there are changes in the production line or plant. In such cases the necessary type testing has to be agreed between Instytut Techniki Budowlanej and the notified body.

Issued in Warsaw on 02/08/2017 by Instytut Techniki Budowlanej

phucky mhi

Krzysztof Kuczyński, PhD Deputy Director of ITB

Table A1: Anchor threaded rod dimensions

Size	d [mm]	h _{ef,min} [mm]	h _{ef,max} [mm]
M8	8	60	160
M10	10	70	200
M12	12	80	240
M16	16	100	320
M20	20	120	400
M24	24	145	480

RAMSAUER Anker Kleber 680	Annex A2
Anchor rod types and dimensions	of European Technical Assessment ETA-17/0679

Table	A 2.	Threa	ال مال	
Lable	Δ_{J} .	Inrea	nen	rode

	Designation				
Part	Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042	Stainless steel	High corrosion resistance stainless steel (HCR)		
Threaded rod	Steel, property class 4.8 to 12.9, acc. to EN ISO 898-1	Material 1.4401, 1.4571 acc. to EN 10088; property class 70 and 80 (A4-70 and A4-80) acc. to EN ISO 3506	Material 1.4529, 1.4565, 1.4547 acc. to EN 10088; property class 70 acc. to EN ISO 3506		
Hexagon nut	Steel, property class 4 to 12, acc. to EN 20898-2; corresponding to anchor rod material	Material 1.4401, 1.4571 acc. to EN 10088; property class 70 and 80 (A4-70 and A4-80) acc. to EN ISO 3506	Material 1.4529, 1.4565, 1.4547 acc. to EN 10088; property class 70 acc. to EN ISO 3506		
Washer	Steel, acc. to EN ISO 7089; corresponding to anchor rod material	Material 1.4401, 1.4571 acc. to EN 10088; corresponding to anchor rod material	Material 1.4529, 1.4565, 1.4547 acc. to EN 10088; corresponding to anchor rod material		

Commercial standard threaded rods (in the case of rods made of galvanized steel – standard rods with property class \leq 8.8 only), with:

- material and mechanical properties according to Table A2,
- confirmation of material and mechanical properties by inspection certificate 3.1 according to EN-10204:2004; the documents shall be stored,
- marking of the threaded rod with the embedment depth.

Note: Commercial standard threaded rods made of galvanized steel with property class above 8.8 are not permitted in some Member States.

Table A3: Injection mortars

Product	Composition	
RAMSAUER Anker Kleber 680 (two component injection mortars)	Additive: quartz Bonding agent: vinyl ester resin styrene free Hardener: dibenzoyl peroxide	

RAMSAUER Anker Kleber 680	Annex A3
Materials	of European Technical Assessment ETA-17/0679

Cartridge types and sizes

Annex A4

SPECIFICATION OF INTENDED USE

Use:

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 of Regulation (EU) 305/2011 shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

Anchors subject to:

Static and quasi-static loads: sizes from M8 to M24.

Base material:

- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum to C50/60 at maximum according to EN 206-1.
- Non cracked concrete: sizes from M8 to M24.
- Cracked concrete: sizes from M10 to M20.

Temperature range:

The anchors may be used in the following temperature range:

- -40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C).
- -40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C).
- -40°C to +120°C (max. short term temperature +120°C and max. long term temperature +72°C).

Use conditions (environmental conditions):

- Elements made of galvanized steel may be used in structures subject to dry internal conditions.
- Elements made of stainless steel may be used in structures subject to dry internal conditions and also in concrete subject to external atmospheric exposure (including industrial and marine environment) or exposure in permanently damp internal conditions if no particular aggressive conditions exist. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).
- Elements made of high corrosion resistant steel may be used in structures subject to dry internal conditions and also in concrete subject to external atmospheric exposure or exposure in permanently damp internal conditions or in other particular aggressive conditions. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Installation:

- Dry or wet concrete (use category 1): sizes from M8 to M24.
- Flooded holes with the exception of seawater (use category 2): sizes from M8 to M24.
- All the diameters may be used overhead: sizes from M8 to M24.
- The anchors are suitable for hammer drilled holes: sizes from M8 to M24.

Design methods:

EOTA Technical Report TR029 (September 2010) or CEN/TS 1992-4.

RAMSAUER Anker Kleber 680	Annex B1
Intended use	of European Technical Assessment ETA-17/0679

Table B1: Installation data

Size		M8	M10	M12	M16	M20	M24
Nominal drilling diameter	d ₀ [mm]	10	12	14	18	24	28
Maximum diameter hole in the fixture	d _{fix} [mm]	9	12	14	18	22	26
Effective	h _{ef,min} [mm]	60	70	80	100	120	145
embedment depth	h _{ef,max} [mm]	160	200	240	320	400	480
Depth of the drilling hole	h ₁ [mm]			h _{ef} +	5 mm		
Minimum thickness of the concrete slab	h _{min} [mm]	h _{ef} + 3	30 mm; ≥ 10	00 mm		h _{ef} + 2d ₀	
Torque moment	T _{inst} [N·m]	10	20	40	80	130	200
Thickness to be	t _{fix,min} [mm]			>	0		
fixed $t_{\text{fix,max}} \text{[mn]}$				< 1	500		
Minimum spacing	s _{min} [mm]	40	40	40	50	60	80
Minimum edge distance	c _{min} [mm]	40	40	40	50	60	80

RAMSAUER Anker Kleber 680	Annex B2
Installation data	of European Technical Assessment ETA-17/0679
	1

Table B2: Processing time and minimum curing time

RAMSAUER Anker Kleber 680 (standard version)				
Concrete temperature [C°]	Processing time [min.]	Minimum curing time ¹⁾ [min.]		
-10	105	1320		
-5	65	780		
0	45	420		
+5	25	90		
+10	16	60		
+15	11,5	45		
+20	7,5	40		
+25	5	35		
+30	3	30		
+35	2	25		
+40	1	20		

The minimum time from the end of the mixing to the time when the anchor may be torque or loaded (whichever is longer). Minimum resin temperature for installation +5°C; maximum resin temperature for installation +30°C. For wet condition and flooded holes the curing time must be double.

RAMSAUER Anker Kleber 680	Annex B3
Processing time and curing time	of European Technical Assessment ETA-17/0679

Manual Blower pump: nominal dimensions

It is possible to use the mixer extensior with the manual blower pump.

However it is possible to blow the hole using the mechanical air system (compressed air) also with the mixer estension

Suitable min pressure 6 bar at 6 m³/h Oll-free compressed air Recommended air gun with an orifice opening of minimum 3.5 mm in diameter

1) Position to insert the mixer extension

Mixer extension (from 380 mm to 1000 mm) with nominal diameter 8 mm

RAMSAUER Anker Kleber 680

Cleaning tools (1)

Annex B4

Table B3: Standard brush diameter

Th	readed rod diamet	er	M8	M10	M12	M16	M20	M24
d ₀	Nominal drill hole	[mm]	10	12	14	18	24	28
d _b	Brush diameter	[mm]	12	14	16	20	26	30

- 1 Steel bristles
- 2 Steel stem
- (3) Wood handle

Table B4: Special brush diameter (mechanical brush)

Th	readed rod diamet	er	M16	M20	M24
d ₀	Nominal drill hole	[mm]	18	24	28
d _b	Brush diameter	[mm]	20	26	30

- (1) Steel bristles
- 2 Steel stem
- 3 Threaded connection for drilling tool extension
- 4 Extension special brush
- 5 Drilling tool connection (SDS connection)

RAMSAUER Anker Kleber 680 Annex B5 of European Technical Assessment ETA-17/0679

Table B5: Mortar injection pumps

Pumps (injection guns)	Cartridges	Types
R	300 ml 165 ml	Manual (up to 300 mm anchorage depth)
	345 ml 300 ml 165 ml	Manual (up to 300 mm anchorage depth)
	from 380 ml to 420 ml	Manual (up to 300 mm anchorage depth)
	from 380 ml to 420 ml	Pneumatic
	825 ml	Manual (up to 300 mm anchorage depth)
7	825 ml	Pneumatic

RAMSAUER Anker Kleber 680	Annov P7
	Annex B7
Tools for injection (2)	of European Technical Assessment ETA-17/0679

Overhead installation instruction

Annex B10

Partial safety factor You Y	Size			M8	M10	M12	M16	M20	M24
Characteristic resistance	Steel failure								
Characteristic resistance	Steel failure with threaded rod grade 4.8	3							
Partial safety factor Y _{Max} [-] 1,50	Characteristic resistance		[kN]	15	23	34	63	98	141
Steel failure with threaded rod grade 5.8 Characteristic resistance	Partial safety factor								171
Characteristic resistance	Steel failure with threaded rod grade 5.8	3				• ,	-		
Partial safety factor Pass Company Company Pass Pas	Characteristic resistance		[kN]	18	29	42	78	122	176
Steel failure with threaded rod grade 8.8 NRs.s. [KN] 29 46 67 126 196 2	Partial safety factor	A CONTRACTOR OF THE PARTY OF TH						122	170
Characteristic resistance	Steel failure with threaded rod grade 8.8	3				- ''	00		
Partial safety factor Partial safety factor for combined pull-out, concrete cone and splitting failure Partial safety factor for combined pull-out, concrete cone and splitting failure Partial safety factor for in use Partial safety factor for i			[kN]	29	46	67	126	196	282
Steel failure with threaded rod grade 10.9	Partial safety factor							100	202
Characteristic resistance N _{Rb,S} [kN] [kN] 37 58 84 157 245 3 Partial safety factor γ _{Ms} [-] 1,40	Steel failure with threaded rod grade 10	.9				- ',	00		
Partial safety factor YMs E 1,40	Characteristic resistance		[kN]	37	58	84	157	245	353
Steel failure with threaded rod grade 12.9 Characteristic resistance $ N_{RR,b} $ $ \{kN\} $ 44 70 101 188 294 4 Parilal safety factor $ V_{MS} $ $ \{-1\} $ $ $				01	_ 00			243	333
Characteristic resistance $N_{RR,8}$ [kN] 44 70 101 188 294 4 79 artial safety factor γ_{MS} [·] 1,40 Steel failure with stainless steel threaded rod A4-70 Characteristic resistance $N_{RR,8}$ [kN] 26 41 59 110 171 2 Partial safety factor γ_{MS} [·] 1,87 Steel failure with stainless steel threaded rod A4-80 Characteristic resistance $N_{RR,8}$ [kN] 29 46 67 126 196 2 Partial safety factor γ_{MS} [·] 1,60 Steel failure with high corrosion resistant steel grade 70 Characteristic resistance $N_{RR,8}$ [kN] 26 41 59 110 171 2 Partial safety factor γ_{MS} [·] 1,87 Combined pull-out and concrete cone failure in non cracked concrete C20/25 Characteristic bond resistance temperature range -40°C / +40°C 1 Characteristic bond resistance temperature range -40°C / +80°C 1 Characteristic bond resistance temperature range -40°C / +80°C 1 Trick.ucr [N/mm²] 11,0 8,5 8,5 8,5 7,0 7 Characteristic bond resistance temperature range -40°C / +120°C 1 Trick.ucr [N/mm²] 11,0 8,5 8,5 8,5 7,0 7 Characteristic bond resistance temperature range -40°C / +120°C 1 Trick.ucr [N/mm²] 11,0 8,5 8,5 8,5 7,0 7 Characteristic bond resistance temperature range -40°C / +80°C 1 Trick.ucr [N/mm²] 11,0 8,5 8,5 8,5 8,5 7,0 7 Characteristic bond resistance temperature range -40°C / +80°C 1 Trick.ucr [N/mm²] 11,0 8,5 8,5 8,5 8,5 7,0 7 Trick.ucr [N/mm²] 11,0 8,5 8,5 8,5 8,5 7,0 7 Trick.ucr [N/mm²] 11,0 8,5 8,5 8,5 8,5 7,0 7 Trick.ucr [N/mm²] 11,0 8,5 8,5 8,5 8,5 7,0 7 Trick.ucr [N/mm²] 11,0 8,5 8,5 8,5 8,5 7,0 7 Trick.ucr [N/mm²] 11,0 8,5 8,5 8,5 8,5 7,0 7 Trick.ucr [N/mm²] 11,0 8,5 8,5 8,5 8,5 7,0 7 Trick.ucr [N/mm²] 11,0 8,5 8,5 8,5 8,5 7,0 7 Trick.ucr [N/mm²] 11,0 8,5 8,5 8,5 8,5 7,0 7 Trick.ucr [N/mm²] 11,0 8,5 8,5 8,5 8,5 7,0 7 Trick.ucr [N/mm²] 11,0 8,5 8,5 8,5 8,5 7,0 7 Trick.ucr [N/mm²] 11,0 8,5 8,5 8,5 8,5 8,5 7,0 7 Trick.ucr [N/mm²] 11,0 8,5 8,5 8,5 8,5 8,5 7,0 7 Trick.ucr [N/mm²] 11,0 8,5 8,5 8,5 8,5 8,5 8,5 8,5 8,5 8,5 8,5		9				1,	40		
Partial safety factor Tytos C			[kN]	44	70	101	100	204	424
Steel failure with stainless steel threaded rod A4-70 Characteristic resistance N _{Rk.8} [kN] 26 41 59 110 171 2 2 2 2 2 2 2 2 2					10			254	424
Characteristic resistance $N_{Rk,g}$ [kN] 26 41 59 110 171 2 1,87 Steel failure with stainless steel threaded rod A4-80 Characteristic resistance $N_{Rk,g}$ [kN] 29 46 67 126 196 2 Partial safety factor y_{Ms} [-] 1,60 Steel failure with high corrosion resistant steel grade 70 Characteristic resistance $N_{Rk,g}$ [kN] 26 41 59 110 171 2 Partial safety factor y_{Ms} [-] 1,87 Combined pull-out and concrete cone failure in non cracked concrete C20/25 Characteristic bond resistance temperature range -40°C / +40°C y_{Ms} [N/mm²] 16,0 12,0 12,0 12,0 9,5 \$ Characteristic bond resistance temperature range -40°C / +40°C y_{Ms} [N/mm²] 11,0 8,5 8,5 8,5 7,0 7 Characteristic bond resistance temperature range -40°C / +80°C y_{Ms} [N/mm²] 11,0 8,5 8,5 8,5 7,0 7 Characteristic bond resistance temperature range -40°C / +10°C y_{Ms} [N/mm²] 11,0 8,5 8,5 8,5 7,0 7 Takkuer [N/mm²] 6,0 4,5 4,5 4,5 4,5 4,0 4 1,123 1,1		d rod A4-70	[]			1,	40		
Partial safety factor YMs F			[kNI]	26	11	50	110	171	247
Steel failure with stainless steel threaded rod A4-80 Characteristic resistance N _{RK,B} [kN] 29 46 67 126 196 2 Partial safety factor γ_{MS} [c] Characteristic resistance N _{RK,B} [kN] 26 41 59 110 171 2 Partial safety factor γ_{MS} [l] γ_{MS}				20	41	****		171	247
Characteristic resistance $N_{RK,5}$ $[kN]$ 29 46 67 126 196 2 7_{MB} $[\cdot]$ $1,60$ Steel failure with high corrosion resistant steel grade 70 Characteristic resistance $N_{RK,5}$ $[kN]$ 26 41 59 110 171 2 Partial safety factor Y_{MB} $[\cdot]$ $1,87$ Combined pull-out and concrete cone failure in non cracked concrete $C20/25$ Characteristic bond resistance temperature range $-40^{\circ}\text{C}/+40^{\circ}\text{C}^{-1}$ $\tau_{RK,uor}$ $[N/mm^2]$ $16,0$ $12,0$ $12,0$ $12,0$ $9,5$ 9 Characteristic bond resistance temperature range $-40^{\circ}\text{C}/+40^{\circ}\text{C}^{-1}$ $\tau_{RK,uor}$ $[N/mm^2]$ $11,0$ $8,5$ $8,5$ $8,5$ $7,0$ 7 Characteristic bond resistance temperature range $-40^{\circ}\text{C}/+40^{\circ}\text{C}^{-1}$ $\tau_{RK,uor}$ $[N/mm^2]$ $11,0$ $8,5$ $8,5$ $8,5$ $7,0$ 7 Characteristic bond resistance temperature range $-40^{\circ}\text{C}/+20^{\circ}\text{C}^{-1}$ $\tau_{RK,uor}$ $[N/mm^2]$ $6,0$ $4,5$ $4,5$ $4,5$ $4,0$ 4 Increasing factor for $C30/37$ $\tau_{RK,uor}$ τ_{RK		d rod 44-80	[-]			1,0	01		
Partial safety factor YMS Color YMS	Characteristic resistance		[[AJ]]	20	46	67	100	400	000
Steel failure with high corrosion resistant steel grade 70 Characteristic resistance Nikls [kN] 26				29	40			196	282
Characteristic resistance $N_{Rik,s}$ $[kN]$ 26 41 59 110 171 2 $1,87$ $1,87$ 2 2 2 2 2 2 2 2 2 2		t steel grade 70	[-]			1,	00		
Partial safety factor $\frac{\gamma_{Ms}}{Combined pull-out and concrete cone failure in non cracked concrete C20/25} = \frac{1,87}{Combined pull-out and concrete cone failure in non cracked concrete C20/25} = \frac{1,87}{Combined pull-out and concrete cone failure in non cracked concrete C20/25} = \frac{1,87}{Combined pull-out and concrete cone failure in non cracked concrete C20/25} = \frac{1,87}{Combined pull-out, concrete cone and splitting failure} = \frac{1,87}{Combined pull-out} = \frac{1,87}{Combine$	Characteristic resistance		[LAJ]	26	44	EO	110	474	0.47
Combined pull-out and concrete cone failure in non cracked concrete C20/25 Characteristic bond resistance temperature range -40°C / $+40^{\circ}\text{C}$ $\tau_{\text{Rk},\text{ucr}}$ $[\text{N/mm}^2]$ 16,0 12,0 12,0 12,0 9,5 5 5 5 5 5 5 5 5 5				20	41			1/1	247
Characteristic bond resistance temperature range $-40^{\circ}\text{C} / +40^{\circ}\text{C}^{-1}$		oono foilure in ne	[-]		000/05	1,6	57		
temperature range -40°C / +40°C 1) $t_{Rk,ucr}$ $[N/mm^2]$ 16,0 12,0 12,0 12,0 9,5 8 Characteristic bond resistance temperature range -40°C / +80°C 1) $t_{Rk,ucr}$ $[N/mm^2]$ 11,0 8,5 8,5 8,5 7,0 7 Characteristic bond resistance temperature range -40°C / +120°C 1) $t_{Rk,ucr}$ $[N/mm^2]$ 6,0 4,5 4,5 4,5 4,0 4 Increasing factor for C30/37 $t_{Rk,ucr}$ $[N/mm^2]$ 6,0 4,5 4,5 4,5 4,0 4 Increasing factor for C40/50 $t_{Rk,ucr}$ $[N/mm^2]$ $t_{Rk,ucr}$ $t_{Rk,ucr}$ $[N/mm^2]$ $t_{Rk,ucr}$	Characteristic hand resistance	cone failure in no	on cracked o	concrete	C20/25				
Characteristic bond resistance temperature range $-40^{\circ}\text{C} / +80^{\circ}\text{C}^{-1}$ $\tau_{Rk,ucr}$ $[\text{N/mm}^2]$ $11,0$ $8,5$ $8,5$ $8,5$ $7,0$ 7 Characteristic bond resistance temperature range $-40^{\circ}\text{C} / +80^{\circ}\text{C}^{-1}$ $\tau_{Rk,ucr}$ $[\text{N/mm}^2]$ $6,0$ $4,5$ $4,5$ $4,5$ $4,0$ 4 Increasing factor for C30/37 $\tau_{Rk,ucr}$		τ _{Rk.ucr}	[N/mm ²]	16,0	12.0	12.0	12.0	9.5	9,5
temperature range -40°C / +80°C 1) Characteristic bond resistance temperature range -40°C / +120°C 1) Increasing factor for C30/37 Increasing factor for C40/50 Increasing factor for C50/60 Splitting failure Edge distance $C_{cr,Nsp}$ [mm] $C_{cr,Nsp}$ Spacing $C_{cr,Nsp}$ Spacing Spac				03.250.60000			,-		0,0
Characteristic bond resistance temperature range -40°C / $+120^{\circ}\text{C}$ $^{1)}$ 1		τ _{Rk,ucr}	[N/mm ²]	11,0	8,5	8,5	8.5	7.0	7,0
temperature range -40°C / $+120^{\circ}\text{C}$ $^{1)}$ 1						- 1			
Increasing factor for C30/37 Increasing factor for C40/50 ψ_c [-] 1,12 Increasing factor for C50/60 T1,30 Splitting failure Edge distance $C_{cr,Nsp}$ Spacing $C_{cr,Nsp}$ Spacing $C_{cr,Nsp}$ Spacing $C_{cr,Nsp}$ Spacing $C_{cr,Nsp}$ Spacing Source and splitting failure If h = h_min		τ _{Rk,ucr}	[N/mm ²]	6,0	4,5	4,5	4,5	4,0	4,0
Increasing factor for C40/50 ψ_c [-] 1,23 1,30 Splitting failure If h = h_{min} 2,5 \cdot h_{ef} 2,0 \cdot h_{ef} 1,5 \cdot h_{ef} 1							10		
Increasing factor for C50/60			f.1						
		- Ψc	[-]						
$ \text{Edge distance} \qquad \qquad \text{C}_{\text{cr,Nsp}} \qquad \text{[mm]} \qquad \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$						1,	30		
Edge distance $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	opinality landle					161		Managed a	
Edge distance $C_{cr,Nsp} [mm] \\ \hline \begin{array}{c} If \ h_{min} < h < 2 \cdot h_{min} \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$									
Edge distance $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				2,5	· h _{ef}	2,0	· h _{ef}	1,5	h _{ef}
Edge distance $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						If h _{min} < h	< 2 · h _{min}		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						1 1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Edge distance	C	[mm]			2 v h			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ocr,Nsp	[,,,,,,]			- A men			
Spacing $S_{cr,Nsp}$ [mm] $2 \cdot C_{cr,sp}$ Partial safety factor for combined pull-out, concrete cone and splitting failure Partial safety factors for in use category 1 ($\gamma_2 = 1,0$ included)						h _{min} c	a No. Cartier		
Spacing $S_{cr,Nsp}$ [mm] $2 \cdot C_{cr,sp}$ Partial safety factor for combined pull-out, concrete cone and splitting failure Partial safety factors for in use category 1 ($\gamma_2 = 1,0$ included)						interpolat	e values		
Spacing $S_{cr,Nsp}$ [mm] $2 \cdot C_{cr,sp}$ Partial safety factor for combined pull-out, concrete cone and splitting failure Partial safety factors for in use category 1 ($\gamma_2 = 1,0$ included)						if h ≥ 2	. h _{min}		
Spacing $S_{cr,Nsp}$ [mm] $2 \cdot C_{cr,sp}$ Partial safety factor for combined pull-out, concrete cone and splitting failure Partial safety factors for in use category 1 ($\gamma_2 = 1,0$ included)								1111111	
Partial safety factor for combined pull-out, concrete cone and splitting failure Partial safety factors for in use category 1 ($\gamma_2 = 1.0$ included) 1,50	Spacing	S	[mm]	2-0-0800					
Partial safety factors for in use category 1 (γ_2 = 1,0 included) 1,50					£-11	2 . C	cr,sp		
category 1 (γ_2 = 1,0 included) 1,50	Partial safety factors for in use	pull-out, concre	te cone and	spiitting	tallure				
2)						1.5	0		
		γ _{Mp} = γ _{Mc} = γ _{Msp} 2)	[-]			.,,-			
		1				1.8	30		
category 2 (γ ₂ = 1,2 included) 1,80 Note: Design method according to TR 029						.,,			

Characteristic resistance under tension loads in non cracked concrete

Annex C1

Size			M10	M12	M16	M20
Steel failure						
Steel failure with threaded rod grade 4.8						
Characteristic resistance	N _{Rk,s}	[kN]	23	34	63	98
Partial safety factor	γMs	[-]		1,	50	
Steel failure with threaded rod grade 5.8						
Characteristic resistance	N _{Rk,s}	[kN]	29	42	78	122
Partial safety factor	γMs	[-]		1,	50	
Steel failure with threaded rod grade 8.8			. 11			
Characteristic resistance	N _{Rk,s}	[kN]	46	67	126	196
Partial safety factor	γMs	[-]		1,	50	
Steel failure with threaded rod grade 10.						
Characteristic resistance	N _{Rk,s}	[kN]	58	84	157	245
Partial safety factor	γMs	[-]		1,	40	
Steel failure with threaded rod grade 12.					100	201
Characteristic resistance	N _{Rk,s}	[kN]	70	101	188	294
Partial safety factor	γMs	[-]		1,	40	
Steel failure with stainless steel threaded		FI A 12	44	50	110	474
Characteristic resistance	N _{Rk,s}	[kN]	41	59	110	171
Partial safety factor	γMs	[-]		1,	,87	
Steel failure with stainless steel threaded	1	FL.N.I3	AC	67	126	196
Characteristic resistance	N _{Rk,s}	[kN]	46	67	.60	190
Partial safety factor	γMs	[-]			,00	
Steel failure with high corrosion resistant Characteristic resistance		[kN]	41	59	110	171
Partial safety factor	N _{Rk,s}	[-]	41		.87	171
	γMs		oto CONIDE		,07	The State of the S
Combined pull-out and concrete	one failure in Cr	acked Colici	ete C20/25			
Characteristic bond resistance	T _{Rk,cr}	[N/mm ²]	9,0	9,0	9,0	6,5
temperature range -40°C / +40°C 1)	111,51					
Characteristic bond resistance	T _{Rk,cr}	[N/mm ²]	6,5	6,5	6,5	4,5
temperature range -40°C / +80°C ¹⁾ Characteristic bond resistance					100 000	2000 200
temperature range -40°C / +120°C ¹⁾	T _{Rk,cr}	[N/mm ²]	3,5	3,5	3,5	2,5
Increasing factor for C30/37				1	12	1
Increasing factor for C40/50	Ψο	[-]			.23	
Increasing factor for C50/60	Ψ ^c	.,			.30	V 18 1 2 1
Splitting failure		100000000000000000000000000000000000000		DE/ESERS		
opinting failure				If h	= h _{min}	
			2,5 · h _{ef}		· h _{ef}	1,5 · h _e
			Z,O · Hef			1,5 118
				11 11 _{min} < 1	n < 2 · h _{min}	
Edge distance	C _{cr,Nsp}	[mm]		2 × h _{man}		
				h _{rrin}		
					atë valides	
			V110 17 17 17 17 17 17 17 17 17 17 17 17 17	if h ≥	2 · h _{min}	
				C	cr,Np	
Spacing	S _{cr,Nsp}	[mm]		2 ·	C _{cr,sp}	
Partial safety factor for combined			splitting faile			
Partial safety factors for in use	pan dat, donord	to oone and	opintarig rain			
category 1 (γ_2 = 1,0 included)		200		1,	,50	
Partial safety factors for in use	$\gamma_{Mp} = \gamma_{Mc} = \gamma_{Msp}^{2}$	[-]				
category 2 (γ_2 = 1,2 included)	1 6 1			1,	,80	
	020					
Note: Design method according to TR 1) See: Annex B1 2) In the absence of	f other national resu	lation				
See: Annex Bit in the absence of	ı otner national regu	liation				

Characteristic resistance under tension loads

RAMSAUER Anker Kleber 680

in cracked concrete

Annex C2

Table C3: Characteristic value	s for shear loads - stee	al failure without lover arm
i abic 00. Offaracteristic value	is ful sileal luaus - stei	al lallure without lever arm

Size			M8	M10	M12	M16	M20	M24
Steel failure with threaded rod grad	de 4.8		1010	WITO	14112	IVIIO	10120	INIZ
Characteristic resistance	V _{Rk.s}	[kN]	7	12	17	31	49	71
Partial safety factor 1)	YMs	[-]				,25	10	
Steel failure with threaded rod grad	de 5.8					,=0		-
Characteristic resistance	V _{Rk.s}	[kN]	9	14	21	39	61	88
Partial safety factor 1)	Ϋ́Ms	[-]		- 1 1		,25	01	
Steel failure with threaded rod grad	de 8.8	[]			-	,20		
Characteristic resistance	V _{Rks}	[kN]	15	23	34	63	98	141
Partial safety factor 1)	Ϋ́Ms	[-]	1.0			.25	- 00	171
Steel failure with threaded rod grad	de 10.9					,		
Characteristic resistance	$V_{Rk,s}$	[kN]	18	29	42	78	122	176
Partial safety factor 1)	Ϋ́Ms	[-]	1,50					
Steel failure with threaded rod grad								
Characteristic resistance	V _{Rks}	[kN]	22	35	51	94	147	212
Partial safety factor 1)	γMs	[-]				.50		
Steel failure with stainless steel thi	eaded rod A4-70							
Characteristic resistance	V _{Rk.s}	[kN]	13	20	29	55	86	124
Partial safety factor 1)	ΥMs	[-]			1.	56		
Steel failure with stainless steel the	eaded rod A4-80		4 KM 2 1 1 1 1			MEL-1815		
Characteristic resistance	$V_{Rk,s}$	[kN]	15	23	34	63	98	141
Partial safety factor 1)	YMs	[-]				33		
Steel failure with high corrosion sta	ainless steel grade 70							
Characteristic resistance	V _{Rk.s}	[kN]	13	20	29	55	86	124
Partial safety factor 1)	γMs	[-]				56		121

Table C4: Characteristic values for shear loads - steel failure with lever arm

Size			M8	M10	M12	M16	M20	M24
Steel failure with threaded rod grad	le 4.8		10.0			11110	14120	1012
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449
Partial safety factor 1)	γMs	[-]				25	200	-110
Steel failure with threaded rod grad	le 5.8	10:					3/19/27	
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	561
Partial safety factor 1)	γMs	[-]				25	OLI	
Steel failure with threaded rod grad					A Sharing			
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	898
Partial safety factor 1)	γMs	[-]				25	0.0	- 000
Steel failure with threaded rod grad	le 10.9							
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	37	75	131	333	649	1123
Partial safety factor 1)	ΥMs	[-]	1,50					
Steel failure with threaded rod grad	le 12.9		18 14 17			7 M M M M		
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	45	90	157	400	779	1347
Partial safety factor 1)	ΥMs	[-]			1.	50	7.0	- 10 11
Steel failure with stainless steel thr	eaded rod A4-70			718/102				HI STORY
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	26	52	92	233	454	786
Partial safety factor 1)	γMs	[-]			1.	56		
Steel failure with stainless steel thr	eaded rod A4-80			1327				
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	898
Partial safety factor 1)	γMs	[-]				33	2.0	
Steel failure with high corrosion res	sistant steel grade 70							
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	26	52	92	233	454	786
Partial safety factor 1)	γMs	[-]				56		

¹⁾ In the absence of other national regulation

Characteristic resistance under shear loads in cracked and non-cracked concrete

Annex C3

Table C5: Characteristic values for shear loads - pry out and concrete edge failure

Size			M8	M10	M12	M16	M20	M24
	min	[mm]	60	70	80	100	120	145
Effective anchorage depth hef	max	[mm]	160	200	240	320	400	480
Pry out failure								
Factor	k	[-]	2	2	2	2	2	2
Partial safety factor 1)	γмр	[-]			1	,5		
Concrete edge failure								
Partial safety factor 1)	γмс	[-]		3 77 -	1	,5		

¹⁾ In the absence of other national regulation

Table C6: Displacement under tension loads

Size				M10	M12	M16	M20	M24
Characteristic displacement in no	on-cracked concrete C	20/25 to C5	50/60 un	der tens	ion load	s		
Admissible service load*	F	[kN]	9,6	10,8	14,3	23,8	29,6	42,4
	δ _{N0}	[mm]	0,30	0,30	0,35	0,35	0,35	0,40
Displacement	$\delta_{N\infty}$	[mm]	0,85	0,85	0,85	0,85	0,85	0,85

Size	M10	M12	M16	M20		
Characteristic displacement in cra	acked concrete C20/2	5 to C50/60	under tensi	on loads		
Admissible service load*	F	[kN]	9,5	14,3	21,4	23,8
	δ_{N0}	[mm]	0,50	0,50	0,70	0,60
Displacement	$\delta_{N\infty}$	[mm]	0,85	0,85	0,85	0,85

^{*} These values are suitable for each temperature range and categories specified in Annex B1

Table C7: Displacement under shear loads

Size			M8	M10	M12	M16	M20	M24
Characteristic displacement in cracked and non-cracked concrete C20/25 to C50/60 under shear loads								
Admissible service load*	F	[kN]	3,7	5,8	8,4	15,7	24,5	35,3
Displacement	δνο	[mm]	2,0	2,0	2,0	2,0	2,0	2,0
	$\delta_{V^{\infty}}$	[mm]	3,0	3,0	3,0	3,0	3,0	3,0

^{*} These values are suitable for each temperature range and categories specified in Annex B1

RAMSAUER Anker Kleber 680

Characteristic resistance under shear loads.

Displacement under service loads: tension and shear loads

Annex C4